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INTRODUCTION

Many protected marine species, including marine
mammals, sea turtles, fish and seabirds, exhibit
marked variation in their oceanic distributions on
seasonal, interannual and decadal time scales

(Forney 1999, Pyper & Peterman 1999, Forney 2000,
Maravelias et al. 2000, Rosenkranz et al. 2001,
Koslow et al. 2002). Such temporal and spatial vari-
ability is a major source of uncertainty in ecological
research and marine resource management (Peter-
man & Bradford 1987, Forney et al. 1991, Edwards &
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ABSTRACT: Species−environment models are increasingly recognized as valuable tools for as-
sessing protected species distributions and developing measures to reduce or avoid adverse im-
pacts. Cetacean−habitat models can provide a finer spatial resolution than traditional abundance
estimates, but model predictions are generally based on past observations rather than current or
projected ocean conditions. We present and evaluate methods for near real-time and forecast mod-
els of cetacean distribution based on remotely sensed and modeled oceanographic data. Recent
advancements in processing satellite-derived data (e.g. microwave/infrared blended sea surface
temperature [SST] products) have virtually eliminated data gaps due to cloud cover, allowing
short-term forecasts based on single-day snapshots of oceanic conditions. Ocean circulation
models (e.g. the Regional Ocean Modeling System [ROMS]) allow medium-range forecast predic-
tions of oceanic variables, including SST, chlorophyll and salinity. We developed habitat models for
striped dolphin, fin whale and Dall’s porpoise using line-transect data collected from July to No-
vember 1991−2005 in the California Current Ecosystem. We incorporated daily blended SST data
and monthly ROMS SST forecasts as input variables to predict relative species density in 2008.
Forecast ability was assessed by the models’ ranked predictions across 8 geographic strata, and by
visual inspection of predicted and observed distributions. For all 3 species, there was a significant
correlation between model predictions using daily blended SSTs and actual survey observations
(p < 0.05). Longer-term (3−4 mo) predictions also showed good concordance with observed
sighting locations. Cetacean−habitat models that allow weekly to monthly forecasting of cetacean
abundance can greatly enhance short-term decision-making and advanced mitigation planning.

KEY WORDS:  Cetacean abundance · Habitat-based density model · Generalized additive model ·
GAM · California Current · Remote sensing · Fin whale · Striped dolphin · Dall’s porpoise

Resale or republication not permitted without written consent of the publisher

Contribution to the Theme Section ‘Beyond marine mammal habitat modeling’ OPENPEN
 ACCESSCCESS



Endang Species Res 16: 97–112, 2012

Perkins 1992, Taylor & Gerrodette 1993, Forney 1999,
Ralls & Taylor 2000). Quantitative species− habitat
models are increasingly recognized as valuable tools
for assessing protected species distributions and as-
sisting decision-makers in the development and im-
plementation of measures to reduce adverse impacts
(e.g. fishery bycatch, ship strikes, seismic activities
and navy exercises) (Torres et al. 2003, Kaschner et
al. 2006, Barlow et al. 2009). Although our knowledge
of the ecological processes and trophic linkages in -
fluencing cetacean distributions is limited to a few
species (e.g. Gaskin 1987, Murison & Gaskin 1989,
Baum gartner & Mate 2003, Baumgartner et al. 2003,
Croll et al. 2005), habitat models can be used to help
establish marine protected areas (Hooker et al. 1999,
Cañadas et al. 2002), facilitate the assessment of po-
tential impacts from navy operations (Department of
the Navy 2010) and evaluate the risk of ship strikes
(Redfern et al. unpubl. data). Quantitative models of
species−habitat relationships are commonly based on
cetacean sighting and oceanographic data collected
during line-transect surveys, and they provide a finer
spatial resolution of cetacean density estimates than
standard line- transect methods (Hedley et al. 1999,
Forney 2000, Ferguson et al. 2006, Barlow et al. 2009).
However, the modeled densities are generally static,
based on past observations, rather than dynamic,
based on current or projected ocean conditions. Habi-
tat-based density models that could provide near
real-time (hereafter ‘nowcast’) and forecast predic-
tions would significantly improve the ability of scien-
tists and resource managers to analyze and make de-
cisions related to cetacean distributions.

Given the time and expense of collecting and pro-
cessing in situ oceanographic data, nowcast and fore-
cast predictions may only be possible through the use
of environmental data derived from satellites and
dynamic physical oceanographic models. Satellite
data provide broad spatial coverage in near real-
time, whereas in situ data are limited to the times and
areas surveyed. Becker et al. (2010) recently demon-
strated that remotely sensed sea surface temperature
(SST) data are as effective at capturing species−
environment relationships as in situ SST data. How-
ever, data gaps due to cloud cover have been consid-
ered one of the main disadvantages associated with
using satellite data from passive infrared sensors
(Becker et al. 2010), particularly in regions off the US
West Coast, where persistent low cloud cover is often
associated with coastal upwelling areas. Recent
advances in processing satellite-derived data using
microwave and infrared sensors have virtually elimi-
nated data gaps due to cloud cover (Gentemann et al.

2009), allowing short-term SST forecasts at 9 km spa-
tial resolution based on single-day snapshots of
oceanic conditions.

Ocean circulation models such as the Regional
Ocean Modeling System (ROMS; Chao et al. 2009)
allow 1−9 mo forecast predictions of oceanic vari-
ables at 12.5 km spatial resolution, including SST,
salinity, chlorophyll, oxygen, mixed layer depth,
phytoplankton and zooplankton. The inclusion of
such predictor variables in habitat models is ex -
pected to improve their nowcast and forecast ability;
however, proof-of-concept is required. As a test case
for medium-term (3−4 mo) forecasts, we imple-
mented habitat models in simulated forecast mode
using SST output from ROMS. If SST forecasts are
shown to be effective for species with strong SST
associations (e.g. Dall’s porpoise Phocoenoides dalli;
Forney 2000, Barlow et al. 2009, Becker et al. 2010),
other model-derived physical and biological vari-
ables may improve forecasts for species whose habi-
tat associations are more complex.

In this study we develop and present methods to
improve upon the currently available static habitat
models by providing nowcast and forecast capabili-
ties that are based on remotely sensed and modeled
oceanographic data. As test cases, we se lected 3 Cal-
ifornia Current Ecosystem (CCE) species for which
SST has been a key predictor variable (defined as
having the greatest effect on the mean response) in
previous habitat models: striped dolphin Stenella
coeruleoalba, Dall’s porpoise, and fin whale Balae -
noptera physalus (Forney 2000, Barlow et al. 2009,
Becker et al. 2010). Based on the functional forms of
modeled relationships between encounter rates and
SST, striped dolphins have an affinity for warm off-
shore waters, Dall’s porpoises are primarily found in
cooler, upwelling-modified water, and fin whale
encounter rates are greatest in moderate-tempera-
ture waters within the CCE (Forney 2000, Becker et
al. 2010). We evaluated the models’ forecast capabil-
ities at 3 temporal scales: (1) nowcast (same day), (2)
short-term (2−4 wk) and (3) medium-term (3−4 mo).
Results from this preliminary study provide a basis
for other habitat modeling efforts and may lead to
advances in nowcast and forecast predictions.

MATERIALS AND METHODS

Field methods

Cetacean sighting data used to construct the habi-
tat models were collected within the CCE study area
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(1 141 800 km2; Fig. 1) from late July through early
December 1991, 1993, 1996, 2001 and 2005 (see
 Barlow & Forney 2007) using systematic ship-based
line-transect methods (Buckland et al. 2001). Experi-
enced observers collected cetacean sighting data
using line-transect procedures that were consistent
in all surveys (Kinzey et al. 2000, Barlow & Forney
2007). In summary, 1 starboard and 1 port observer
searched for animals using pedestal-mounted 25 ×
150 binoculars while a third observer/data re corder
searched from a central position using un aided eye
and 7 × 50 handheld binoculars. A team of 6 ob -

servers rotated every 40 min among the 3 positions,
so that each observer received a 2 h rest period dur-
ing the rotations. All ‘on-effort’ observations (i.e.
those made by assigned observers using systematic
line-transect methods during acceptable survey con-
ditions) were made from the flying bridge of the ship.
When cetaceans were detected within 5.5 km of the
trackline, the ship typically diverted from the tran-
sect line in ‘closing mode’ to estimate group size and
identify the species present to the lowest taxonomic
level possible. If the observers were not able to con-
firm species, a higher taxonomic level, e.g. Meso-

plodon spp., was recorded. Group
size was estimated independently by
the ob servers and was defined to
include all animals at the sighting
location that were behaviorally asso-
ciated with one another (traveling,
foraging, milling, resting, etc.). Mod-
els were developed using only sight-
ings made while ‘on effort’ and iden-
tified to species.

Analytical methods

We use the term ‘habitat-based
density models’ to distinguish be -
tween other commonly used termi-
nology such as ‘habitat models’ that
are often based only on presence/
absence, and ‘spatial density models’
that typically include longitude and
latitude as fixed predictor variables.
The ultimate goal of a habitat-based
density model is to predict species
den sity based on dynamic environ -
men tal variables. Currently, the sta-
tic, multi-year average models that
are based on 5 survey years in the
CCE with varying oceanic conditions
(Barlow et al. 2009, Forney et al.
2012, this Theme Section) represent
the best predictions of cetacean dis-
tributions in any future year. In the
present study, we compare the pre-
dictions from these ‘average models’
to new model predictions that are
based on dynamic measures of
oceanic conditions in a future year
(2008), specifically the daily blended
SST data (nowcast and short-term
forecast models, evaluated for daily
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Fig. 1. Completed transects for the Southwest Fisheries Science Center ship-
board surveys conducted late July through early December 1991 and 1993,
1996, 2001 and 2005 off the US West Coast. Thick gray transect lines were sur-
veyed in Beaufort sea states of 0 to 2 and thin gray lines were surveyed in
Beaufort 3 to 5. Black lines on all maps indicate the boundaries of 4 geographic
strata used for line-transect abundance estimation (Barlow & Forney 2007)
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and weekly periods, respectively) and monthly ROMS
SST predictions (medium-term forecast models, eval-
uated over a few months). All models of relative den-
sity were evaluated based on novel survey data col-
lected within the same study area from 29 July
through 30 November 2008, using line-transect meth-
ods identical to those used in the previous 1991−2005
surveys (Fig. 2). The analytical methods used to build
the habitat-based density models are similar to those
used previously for the CCE (Barlow et al. 2009,
Becker et al. 2010) and are briefly summarized below.

Data sources for initial model development

To create samples for modeling, data from the 5
shipboard surveys were divided into continuous
effort segments of approximately 5 km as described
in Becker et al. (2010). The resulting data set con-
tained a total of 11 252 segments ranging in length
from 0.06 to 7.5 km, with the majority (75%) equal to
the target length of 5 km. For each segment, we cal-
culated the total number of groups of each species
and the average group size, calculated as the mean
group size estimate for all observers who made an
estimate.

Models included 2 static habitat variables (water
depth and bathymetric slope) and 1 dynamic variable
(remotely sensed SST; acquired from National
Oceanic and Atmospheric Administration/National
Environmental Satellite, Data and Information Ser-
vice/Pathfinder v5). Water depth in each segment
was obtained from the ETOPO2 2-minute global
relief data (US Department of Commerce NOAA,
NGDC 2006). Bottom slope was calculated as the
magnitude of the bathymetry gradient (meters rise
per meter horizontal) using the gradient operator tool
in GMT (Generic Mapping Tools; Wessel & Smith
1998). Individual depth and bottom slope values esti-
mated at the midpoint of each segment were re -
trieved using the ‘sample’ tool in ArcGIS (Version
9.3, ESRI).

We used 8 d running average SST composites cen-
tered on the date of each survey segment obtained at
a spatial resolution of 0.25° surrounding the segment
midpoint. We selected 8 d composites since they pro-
vide consistent representation of average survey-day
conditions without sacrificing sample size (Becker et
al. 2010). Given the finer spatial resolution of the SST
data used for nowcast and forecast predictions (9 and
12.5 km, respectively), we also constructed the
models using 0.10° SST composites to evaluate poten-
tial bias. Consistent with the findings of Becker et al.

(2010), the models for all 3 species showed similar
functional relationships between SST and the re -
sponse variables, and predictor variables in the final
0.10 and 0.25° models were identical. The models
built with 0.25° SST were ultimately carried forward
for this analysis because they provided larger sample
sizes for model development. Average Beaufort sea
state for each segment was also included as a contin-
uous predictor variable in our models to account for
the variability in sighting conditions (Barlow et al.
2001), but segments with average sea state values ex-
ceeding Beaufort 5 were excluded from the analysis
(Barlow & Forney 2007). Because of detection difficul-
ties in rough seas, the abundance of Dall’s porpoise is
usually estimated using only search effort conducted
in calm seas (Beaufort 0−2; Barlow &  Forney 2007);
however, models built using only segments with
these Beaufort conditions would not have captured
the full range of habitat types for Dall’s porpoise in
the study area. We therefore constructed the Dall’s
porpoise models using the full range of sea state con-
ditions (Beaufort 0−5) for this model comparison.
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Fig. 2. Completed transects (gray lines) for the Southwest
Fisheries Science Center shipboard survey conducted from 
29 July through 30 November 2008 off the US West Coast
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Model development

Separate encounter rate and group size general -
ized additive models (GAMs; Hastie & Tibshirani
1990) were built using the step.gam function in the
statistical software package S-PLUS (Professional
Edition Version 6.1, Release 1 for Windows, Insight-
ful) following the methods of Ferguson et al. (2006)
and Becker et al. (2010). Akaike’s Information Crit -
erion (AIC; Akaike 1973) was initially used in
step.gam as the basis for selecting among potential
combinations of predictor variables and varying de-
grees of freedom. AIC is typically used to obtain the
best model fit with the fewest parameters; to ensure
that all potentially important variables were repre-
sented, we included all variables within 2 AIC units
of the original ‘best’ model in the final predictive
models (when the same variable was included with
various degrees of smoothing, the highest smooth
was selected).

Encounter rate models were built using all transect
segments, regardless of whether they included sight-
ings, whereas group size models were built using
only those segments that included sightings. The
encounter rate data were fit using Poisson GAMs in
which overdispersion was corrected using a quasi-
likelihood model. The natural log of the segment
length was included as an offset term to account for
the varying length (0.06 to 7.5 km) of the segments.
Group size models were built using the natural log of
group size as the response variable and an identity
link function (Ferguson et al. 2006).

Density (number of animals per km2) is typically es-
timated with standard line-transect formulae that in-
clude correction factors for the probability of de -
tection (f(0) and g(0); Buckland et al. 2001). These
correction factors are constants and would not differ
among the models compared in this study, so for sim-
plicity our comparisons were based on a measure of
relative density, equal to the total number of animals
encountered per km surveyed and calculated as the
product of the model-derived encounter rate and
group size. Segment-specific relative density esti-
mates for each species were interpolated to the entire
study area using Surfer 9.0 (Version 9, Golden Soft-
ware). Contour grids were created at a resolution of
25 km using inverse distance weighting to the second
power, and all data within a search radius of 2° lati-
tude (222 km) were used for interpolation to include
data from more than one transect line (transect
 spacing during the 5 survey years was generally less
than 222 km; Barlow et al. 2009). This interpolation
method provided a synoptic view of ‘summer/ fall’

species densities for each survey year, spanning ap-
proximately 4 mo between late July and early De-
cember (Barlow et al. 2009, Forney at al. 2012).

Average models

For the static, 1991−2005 average models, relative
density prediction grids were created for each of the
individual survey years (1991, 1993, 1996, 2001 and
2005), and the individual grid cells were averaged
across all years to calculate an average relative den-
sity for each species. To eliminate occasional over-
specification (‘bull’s eye’ effects), a 5 × 5 pixel (25 km
pixel resolution) moving average filter with equal
weights was applied to the final average prediction
grid. This interpolation process provided smoothed
multi-year average relative density predictions for
the 3 species, taking into account both the varying
oceanographic conditions and the different levels of
sampling coverage achieved during the 5 Southwest
Fisheries Science Center cetacean surveys. Inter -
annual and inter-decadal variations in oceanic condi-
tions and biological productivity have been docu-
mented in the study area (Roemmich & McGowan
1995, Chavez et al. 2003), and variability in oceanic
conditions and cetacean distributions was observed
amongst the 5 survey years (Barlow et al. 2009). The
average relative density models (hereafter ‘average
models’) thus incorporated interannual variability
and are somewhat analogous to an oceanographic
climatology, but measuring cetacean densities rather
than oceanographic properties. On average, they
currently represent the best spatially explicit predic-
tions of relative cetacean density for each of the 3
species.

Nowcast models

Nowcast models were created to evaluate daily
forecast capabilities of models that used dynamic,
satellite-derived SST data as a predictor. The SST
data are based on optimal interpolation methods
(Reynolds & Smith 1994) that blend high-resolution
infrared data with microwave data to provide a daily,
gap-free SST product at 9 km spatial resolution (Gen-
temann et al. 2009). Data from the 2 types of sensors
are used to maximize the strengths in their respective
measurements. The 9 km infrared satellite data allow
for accurate measurement of meso scale features, but
are unable to measure through clouds. The 25 km mi-
crowave data are valuable because SST can be mea-
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sured in both clear and cloudy conditions. These daily
‘blended SST’ values were highly correlated (R >
90%) with 8 d composite SST values for the 2008 sur-
vey, indicating that the former provided a good repre-
sentation of SST conditions as measured by the type
of data used to construct the models. Nowcast predic-
tions of relative density for the 2008 survey were cre-
ated by matching the daily blended 9 km SST data to
each day and time of the transect segments for the
2008 survey. The predicted values for each transect
segment were then interpolated to the entire study
area using the same methods as described above for
the 1991−2005 average models. The density contours
thus represent composite densities based on daily
predictions for the entire 2008 survey.

Short-term forecast models

Short-term (weekly) forecast models were also
developed with the satellite-derived blended SST
data, but relative density predictions were based
on SST values for a single day (1 September 2008)
and model performance was considered relative to
the entire subsequent month (a short-term forecast
range of up to 4 wk). Interpolation was performed
based on transect segment predictions as described
above for the nowcast models.

Medium-term forecast models

Medium-term (3−4 mo) forecast capabilities were
based on SST predictions (12.5 km resolution) gene -
rated in July 2008 by the ROMS (e.g. Chao et al.
2009) for the surveyed months of October and No -
vember 2008. Relative density predictions for each of
the 2 months were then interpolated as de scribed for
the previous models. To simulate a true forecast pre-
diction for which location-specific sea state data
would not be available, predictions were based on
the weighted average sea state for the 1991−2005
surveys, which were the basis for the original model
development.

Model evaluation

We evaluated the performance of the 3 dynamic
models (nowcast, short-term forecast and medium-
term forecast) relative to the static average model
using a combination of the following methods: (1)
visual inspection of the observed 2008 sighting loca-

tions relative to the model-predicted patterns of re -
lative density for the corresponding time period, (2)
the ratio of each of the model-based relative density
predictions to the line-transect relative density esti-
mate for the entire 2008 study area, and (3) a non-
parametric Spearman rank correlation test to evalu-
ate the models’ ability to capture spatial patterns.

Visual inspections were made by overlaying the
predicted relative density contours and the subset of
2008 sightings within the corresponding prediction
period. The human eye is often superior to statistics
for comparing patterns (Wang et al. 2004), particu-
larly in data-limited cases in which more advanced
spatial methods cannot be used. For the nowcast
model, the overlay included all observed sightings
for the 3 species during the 2008 surveys. Short-term
forecast capabilities were evaluated by comparing
the single-day prediction contours with the 2008
sightings made during the subsequent month (Sep-
tember). Medium-range forecasts were evaluated
separately for a 3 mo forecast period (October sight-
ings) and 4 mo forecast period (November sightings).

The average relative density of each species within
the entire study area was compared with relative
density estimates derived directly from the 2008
 survey data (using the product of observed encounter
rate and group size) for the dynamic nowcast/
forecast models and the static average model. Al -
though these comparisons do not provide informa-
tion on the models’ ability to capture spatial patterns,
in concert with the sighting plots, they provide a
quantitative measure for evaluating overall, study
area-wide model accuracy. A ratio of 1 for the line-
transect estimate over the model prediction indicates
perfect agreement between methods, whereas a ratio
of less than 1 indicates that model densities are over-
predicted relative to the observed patterns, and a
ratio greater than 1 indicates that the model densities
are under-predicted.

Correlation tests were only possible for the now-
cast model because of sample-size limitations for the
single-month prediction periods of the short-term
and medium-range forecast models. The Spearman
rank correlation test was based on a comparison of
ranked predictions of estimated relative abundance
(the product of the observed number of sightings and
group size), calculated from the 2008 survey data and
derived by the nowcast model, within 8 geographic
strata of the 1 141 800 km2 study area (Fig. 3): 4
north−south strata consistent with those used for
line-transect abundance estimation (Barlow & For-
ney 2007), and an offshore−onshore division at the
2000 m isobath, as a proxy for the shelf-break. The 4
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north−south strata include waters off Oregon and
Washington (322 200 km2 north of 42°N), northern
California (258 100 km2 south of 42°N and north of
Point Reyes at 38°N), central California (243 000 km2

between Point Conception at 34.5°N and Point
Reyes) and southern California (318 500 km2 south of
Point Conception).

In summary, for the nowcast and forecast analyses,
all relative density predictions were processed using
the same smoothing techniques and were visually
compared with plots of actual and 1991−2005 model -
ed averages. In addition to the visual evaluations, we
compared model-predicted relative density esti-
mates with those derived directly from the survey
data without environmental predictors, and evalu-
ated performance based on the ratios of observed to
predicted relative density. For the study area predic-
tions, nowcast ability was also assessed by the mod-
els’ ranked predictions across 8 geographic strata.

RESULTS

Information on search effort, number of species
sighted and associated line-transect abundance esti-
mates for the 1991−2005 shipboard surveys has been
previously summarized by Barlow & Forney (2007).
The 3 species we used for model development were
selected based on their association with SST as
shown from previous habitat modeling efforts (For-
ney 2000, Becker 2007, Barlow et al. 2009, Becker et
al. 2010). The variables included in our final models,
as well as their functional forms, were similar to those
resulting from the previous studies: striped dolphins
had the greatest number of encounters and largest
group sizes in offshore warm waters >18°C (Becker
2007, Becker et al. 2010), Dall’s porpoise had the
greatest number of encounters in cooler, upwelling-
modified water <17°C  (Forney 2000, Becker 2007,
Becker et al. 2010), and fin whales had the greatest
number of encounters in moderate-temperature
waters of 14−19°C (Becker 2007, Becker et al. 2010)
(Fig. 4). The explained deviance ranged from 8.6 (fin
whale) to 34.2% (Dall’s porpoise) for the encounter
rate models, and from 5.1 (fin whale) to 16.7%
(striped dolphin) for the group size models (Table 1).

Nowcast predictions

Relative density predictions using daily blended
SST matched to each survey day and time for the
entire 2008 survey showed good concordance be -

tween observed sighting locations and model pre -
dictions, and were more accurate at identifying sub-
tle differences in distributions at finer scales than the
average model predictions (Fig. 5). For example, the
relative density predictions for striped dolphins
based on daily blended SST matched the 2008 sight-
ing data better than predictions from the average
models, particularly in the south western portion of
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Common Scientific Encounter Group size
name name rate model (%) model (%)

Striped Stenella 9.6 16.7
dolphin coeruleoalba

Dall’s Phocoenoides 34.2 10.7
porpoise dalli

Fin Balaenoptera 8.6 5.1
whale physalus

Table 1. Percentage of deviance explained by the final
1991−2005 encounter rate and group size models for each 

species

Fig. 3. Geographic strata used for the Spearman rank corre-
lation tests: the 4 north−south strata are consistent with
those used for line-transect abundance estimation (Barlow &
Forney 2007) and an offshore−onshore division occurs at the 

2000 m isobath
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the study area where, based on the actual 2008 sight-
ing data, relative density was lower than the 1991−
2005 average (Fig. 5a). Compared with the 1991−
2005 average, the 2008 distribution of Dall’s porpoise
shifted south into central and northern California
waters and this shift was picked up effectively by the

nowcast model predictions (Fig. 5b). Nowcast predic-
tions were also able to identify the higher numbers of
fin whales in the northwest portion of our study area,
as well as the lower numbers off northern California
between 38° N and 40° N that were missed by the
average models (Fig. 5c).
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Fig. 4. Encounter rate and group size model functions for (a)
striped dolphin, (b) Dall’s porpoise and (c) fin whale. Models
were constructed with both linear terms and smoothing
splines (‘s’ on the y-axis) having up to 3 degrees of freedom.
Degrees of freedom for nonlinear fits are in parentheses on
the y-axis. Potential predictor variables included sea surface
temperature (SST), water depth, bathymetric slope and Beau -
fort (beauf) sea state (the groupsize model did not include
Beaufort sea state). The y-axes represent the term’s (linear or
spline) function. Zero on the y-axes corresponds to no effect
of the predictor variable on the estimated response variable
(encounter rate or group size). The scaling of the y-axes
varies among predictor variables to emphasize model fit. 

Dashed lines: 95% confidence intervals
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b  Dall’s porpoise
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For all 3 species, the relative den-
sity estimates derived from the now-
cast model for the entire study area
for 2008 were similar to those esti-
mated directly from the survey data
and, for striped dolphin and fin
whale, were much closer to the sur-
vey estimates than the average
model predictions (see ratios in
Table 2). Although the survey esti-
mates are not necessarily unbiased,
in concert with line-transect correc-
tion factors (Buckland et al. 2001),
they are currently the standard mea-
sure used to estimate cetacean abun-
dance. Coefficients of variation (CVs)
associated with recent line- transect
abundance estimates for the 3 spe-
cies derived from the 1991− 2005 sur-
vey data used to build the models in
this study ranged from 18 to 45% for
the entire study area (Barlow & For-
ney 2007). The relative density ratios
(line transect over model-predicted)
for the nowcast models are within the
range of these CVs, as all the now-
cast estimates are within a factor of
approximately 2 from the survey esti-
mates (Table 2). The survey-based
2008 relative density estimate for
striped dolphin was lower than in past
years, whereas the relative density of
fin whale was estimated to be greater
in 2008; both of these changes were
effectively captured by the nowcast
models.

The rank correlation test results
for the nowcast models are in good
agreement with our visual evalu -
ations; for all 3 species, Spearman
rank correlation coefficients were
significant (p < 0.05; Table 3), in -
dicating that the predicted ranks
across geographic strata matched
well with the relative abundance
ranks estimated from the ob served
data. These results suggest that the
nowcast models built with data from
past years were able to capture spa-
tial patterns of abundance for all 3
species during 2008 by using novel
 satellite-derived oceano graphic data
for 2008 as predictor variables.
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Fig. 5. Predicted relative density estimates for (a) striped dolphin, (b) Dall’s por-
poise and (c) fin whale based on average model predictions for 1991–2005 and
blended sea surface temperature values matched to each day and time of the
2008 survey (Nowcast). Predictions are shown for the study area (Fig. 2). Inter-
polation grids were created at a resolution of 25 km, using inverse distance
weighting to the second power in Surfer software (Version 9). The same spe-
cies-specific relative density scale was used to enable a comparison between
the predictions. Black dots show actual 2008 sighting locations, with the size of
the dot representing species-specific group sizes (larger dots indicate larger
observed group sizes). Black lines show actual effort for the entire 2008 survey
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Short-term forecast predictions

Relative density predictions using a single day of
blended SST were in good agreement with actual
observations during the subsequent month for all 3
species (Fig. 6). The transect lines completed during
September of the 2008 survey extended from the
coast to the western limit of the study area, enabling

a comparison of the general distribu-
tion patterns among the 3 species. As
is evident from both the observed
sighting locations and the short-term
relative density predictions, striped
dolphins were found mainly in the
western portion of the study area,
Dall’s porpoises closest to the coast
and fin whales generally in between
the two (Fig. 6).

Medium-term forecast predictions

The sighting locations of striped
dolphin, Dall’s porpoise and fin whale
during October and November of the
2008 survey were visually concordant
with 3−4 mo model forecast predic-
tions based on the ROMS monthly
SST values (Fig. 7). Although survey
effort was concentrated in the south-
ern portion of the study area during
these 2 months, in general there were
sightings in areas where relative den-
sity was predicted to be moderate to
high, and few to no sightings in areas
predicted to have the lowest relative
density.

Forecast estimates of relative den-
sity for the portions of the study area
surveyed in October and November
2008 were closer to the survey-based
estimates than the average models for
all 3 species (Table 4). With the ex -
ception of Dall’s porpoise, for which
there were few sightings in October
and none in November, the forecast
estimates were within a factor of
approximately 2 from the survey esti-
mates, and compared favorably with
the CVs associated with recent line-
transect abundance estimates for 4
geographically stratified regions of
our study area (CVs ranged from 26

to >100%; Barlow & Forney 2007). The October fore-
cast estimate for Dall’s porpoise was greater than a
factor of 4 from the survey estimate; however, it was
closer than that of the average model. The 3 mo pre-
dictions more accurately identified the relatively
lower density of striped dolphin and relatively higher
density of fin whale in the October 2008 survey area
than would be assumed from the average model pre-
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Parameter Model-predicted estimate Ratio
Survey Average Nowcast Average Nowcast

estimate (1991−2005) (1991−2005)

Striped dolphin
Encounter rate 0.0016 0.0016 0.0013
Group size 9.55 31.77 25.72
Relative density 0.0153 0.0508 0.0334 0.30 0.46

Dall’s porpoise 
Encounter rate 0.0061 0.0044 0.0057
Group size 3.36 5.41 4.47
Relative density 0.0205 0.0239 0.0253 0.86 0.81

Fin whale 
Encounter rate 0.0066 0.0048 0.0054
Group size 2.58 1.84 1.90
Relative density 0.0170 0.0088 0.0103 1.93 1.65

Table 2. Survey data and model-predicted 2008 encounter rate (group encoun-
ters per km), average group size and relative density (total animals per km,
calculated as encounter rate × group size) estimates for the entire study area.
Ratios represent line-transect over model-predicted relative density  estimates.
The model with the ratio closest to 1.00 appears in bold to illustrate the model
that is most similar to the 2008 survey data. For taxonomic names, see Table 1

Fig. 6. Predicted relative density estimates for (a) striped dolphin, (b) Dall’s
porpoise and (c) fin whale based on blended sea surface temperature values
for 1 September 2008. Predictions are shown for the study area (Fig. 2). Inter-
polation grids were created at a resolution of 25 km, using inverse distance
weighting to the second power in Surfer software (Version 9). Red and orange
represent the highest predicted density, yellow and green moderate density,
and blue the lowest density. Black dots show actual sighting locations for the
month of September from the 2008 survey; white lines show actual effort for 

the month of September from the 2008 survey
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dictions. Although the differences were not as great,
the 4 mo predictions were also able to more effec-
tively capture the numbers of animals observed dur-
ing the November 2008 survey compared with the
average model predictions. The fin whale relative
density forecast was remarkably good, with an
observed to predicted ratio that approached 1 (0.99;
Table 4).

DISCUSSION

Our ability to assess potential impacts on cetacean
species from anthropogenic activities within specific
areas of the CCE have been based on uniform-
 density estimates from broad-scale line-transect sur-
veys and, more recently, from finer-scale habitat-
based estimates of cetacean density (see Forney et al.
2012). The habitat-based density models are devel-
oped from systematic line-transect survey data col-
lected during previous years, and unless someone is
surveying an area in real time, these model predic-
tions currently provide our best expectation of cur-
rent and future species distribution patterns. How-
ever, the CCE is a highly dynamic ecosystem, and in
any given year, patterns of cetacean distribution and
abundance can be markedly different from the aver-
age or another single year.

This case study demonstrates that satellite-derived
and modeled oceanic SST data can be successfully
used as input variables in models developed using
survey data to provide nowcast and forecast predic-
tions of relative density for 3 CCE cetacean species.
Model predictions based on a single daily blended
SST image demonstrated not only nowcast ability,
but reasonable 2−4 wk forecast ability as well, sug-
gesting that this could be an effective tool for re -
source managers who require near real-time predic-
tions of cetacean distribution to avoid or  mitigate
adverse impacts. However, re sults may differ among
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Species r
Average Nowcast

(1991–2005)

Striped dolphin 0.850 0.875
Dall’s porpoise 0.778 0.766
Fin whale 0.810 0.905

Table 3. Summary of Spearman rank correlation coefficients
for the 2 models, Average (1991–2005) and Nowcast. The crit-
ical value at α = 0.05 (1-tailed test) with 5 degrees of freedom
is rcrit = 0.643 (i.e. values are significant if larger); thus all cor-
relations are significant. For taxonomic names, see Table 1

Fig. 7. Predicted relative density estimates for (a) striped dol-
phin, (b) Dall’s porpoise and (c) fin whale based on July 2008
Regional Ocean Modeling System monthly sea surface tem-
perature predictions for October and November 2008. Pre-
dictions are shown for the study area (Fig. 2). Inter polation
grids were created at a resolution of 25 km, using inverse dis-
tance weighting to the second power in Surfer software (Ver-
sion 9). Red and orange represent highest pre dicted density,
yellow and green moderate density, and blue the lowest den-
sity. Black dots show actual sighting locations for October
and November from the 2008 survey; white (striped dolphin
and Dall’s porpoise) and black (fin whale) lines show actual 

effort for October and November from the 2008 survey
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other eco systems and environmental pre dic tors; in
general, the effectiveness of nowcast predictions will
be a function of how dynamic the ecosystem and pre-
dictor are, how well the models capture the underly-
ing variability and whether there is a temporal lag in
the predictor. For example, time lags may be impor-
tant for some variables, such as chlorophyll concen-
tration (Jaquet et al. 1996).

The demonstrated refinement of the temporal pre-
dictions using daily blended SST suggests that we
can make reasonable predictions of relative density
for species with strong SST relationships without
having to collect real-time in situ data. Such predic-
tions would not be possible without recent advance-

ments in processing multi-sensor
satellite-derived data that have virtu-
ally eliminated the cloud cover issue
for SST. This shows promise for both
scientists and resource managers as it
provides a prediction tool for periods
we have not surveyed. However, care
should be taken when making pre-
dictions beyond the range at which
the habitat variables were measured.
For example, when evaluating the
ability of habitat-based density mod-
els to predict across seasons, Becker
(2007) found that models produced
unrealistic values when applied to
data outside of the range used to
build the models. In addition, it will
be difficult to predict abundance if
the animals’ behavioral state (e.g.
 foraging, mi grating and breeding)
changes. For example, the environ-
mental variables used for modeling
will not reflect the absence of species
that move to different areas for sea-
sonal breeding. Further, the habitat-
based density models are built based
on a contemporary population abun-
dance, so forecasts should not be
made so far in the future that they are
forecasting outside of the ‘population
space’ from which the models were
developed. Underlying trends in ab -
undance may change the relation-
ships among cetacean distribution
and their environment, e.g. as a pre-
viously exploited population recovers
and moves back into areas that were
not used at low population sizes.

As satellite-derived and modeled
oceanic SST data are generally available for all grid
cells, spatial predictions can be made over an entire
study area, unlike in situ data that are limited by the
areas surveyed. Species-specific f(0) and g(0) values
suitable for model inclusion should be derived in the
future to allow models to nowcast and forecast actual
densities or numbers of animals within an area. Fur-
ther analyses should also examine model predictions
at finer scales than were possible in this study given
the limited number of sightings available from our
2008 validation survey. Currently, the resolution of
the predicted relative density estimates are too coarse
to evaluate small-scale changes that would be useful
in evaluating alternative shipping routes for whale−
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Parameter Model-predicted estimate Ratio
Survey Average Forecast Average Forecast

estimate (1991−2005) (1991−2005)

October
Striped dolphin
Encounter rate 0.0016 0.0018 0.0016
Group size 11.23 37.35 24.04
Relative density 0.0180 0.0672 0.0385 0.27 0.47

Dall’s porpoise
Encounter rate 0.0012 0.0042 0.0042
Group size 3.58 5.68 4.45
Relative density 0.0043 0.0241 0.0189 0.18 0.23

Fin whale
Encounter rate 0.0084 0.0041 0.0060
Group size 2.44 1.81 1.92
Relative density 0.0205 0.0074 0.0115 2.77 1.78

November
Striped dolphin
Encounter rate 0.0023 0.0017 0.0017
Group size 9.43 28.99 24.13
Relative density 0.0217 0.0493 0.0410 0.44 0.53

Dall’s porpoise
Encounter rate 0a 0.0044 0.0027
Group size 0a 5.09 4.40
Relative density 0a 0.0223 0.0118 − −

Fin whale
Encounter rate 0.0032 0.0056 0.0067
Group size 4.16 1.94 2.00
Relative density 0.0133 0.0109 0.0134 1.33 0.99

aThere were no Dall’s porpoise sightings in November during the 2008
survey

Table 4. Survey data and model-predicted 2008 encounter rate (group en-
counters per km), average group size and relative density (total animals per
km, calculated as encounter rate × group size) estimates for the portions of the
study area surveyed in October and November 2008 (survey tracklines are de-
picted in Fig. 7). Ratios represent line-transect over model-predicted relative
density estimates. The model with the ratio closest to 1.00 appears in bold to
 illustrate the model that is most similar to the 2008 survey data. For taxonomic 

names, see Table 1
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vessel interactions (Redfern et al. unpubl. data) or
navy testing and training operations that occur in
specified operational areas (Department of the Navy
2008). Evaluating the ability of coarse-scale models to
predict finer-scale density estimates would be benefi-
cial, as would additional finer-scale surveys.

The success of the SST-based nowcast and forecast
predictions demonstrated by this case study provides
a foundation for other habitat modeling efforts. Other
cetacean species, however, require more complex
habitat models that include predictor variables such
as chlorophyll, salinity, mixed layer depth and zoo-
plankton indices (Redfern et al. 2008, Barlow et al.
2009). Accessibility to the output of ROMS and simi-
lar oceanic models is increasing rapidly, providing
forecasts of relevant oceanographic parameters. Their
use as predictors can be expected to improve the
models’ nowcast and forecast ability, and might also
prove to be useful for evaluating historic changes in
cetacean abundance and distribution (i.e. hindcasts),
as well as changes that may occur under a number of
projected climate change scenarios. The ability to
produce even short-term forecast predictions would
significantly improve the capability of resource man-
agers to analyze and make decisions related to pro-
tected species abundance and distribution. For exam-
ple, the ability to forecast densities, particularly at
finer spatial scales, could help the Navy select the
lowest impact areas for testing and training activities
(Department of the Navy 2010), aid in the identifica-
tion of overlap between large whales and shipping
traffic (Redfern et al. unpubl. data), and provide a ba-
sis for adaptive surveys or sampling design as effort
could be concentrated in areas predicted to have
greater abundance.
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